Complete the unit circle below.

Inside the circle, label the radian measure of each point.

Outside the circle, label the corresponding x -and y -coordinates of each point.

SCORE: _____ / 8 PTS $(\frac{1}{2}$ POINT DEDUCTED FOR EACH ERROR)

Use the unit circle above to fill in the blanks below. Simplify all answers (including rationalizing denominators). SCORE: _____/4 PTS Write "UNDEFINED" if the expression has no value.

$$[a] \csc \frac{5\pi}{3} = \frac{-2\sqrt{3}}{3} \qquad \frac{1}{-\sqrt{3}} \left(\frac{1}{y}\right)$$

[b]
$$\tan \frac{3\pi}{2} = \frac{\text{UNDEFINED}}{O} \frac{-1}{O} \left(\frac{y}{X} \right)$$

$$[c] \cot \frac{11\pi}{6} = \frac{-\sqrt{3}}{2} \left(\frac{x}{4}\right)$$

[d]
$$\sec \frac{7\pi}{4} = \frac{\sqrt{2}}{\sqrt{2}} \left(\frac{1}{\times}\right)$$

Fill in the blanks below. Simplify all answers (including rationalizing denominators). Write "UNDEFINED" if the expression has no value.

SCORE: /5 PTS

SCORE: _____/2 PTS

[a]
$$-\frac{19\pi}{3}$$
 is co-terminal with $\frac{577}{3}$ (NOTE: Your answer must be between 0 and 2π) $-\frac{1977}{3} + \frac{2477}{3}$

$$[b] \cos\left(-\frac{19\pi}{3}\right) = \frac{1}{2}$$

[c] The supplement of
$$\frac{3\pi}{10}$$
 radians is $\frac{1}{10}$

[d]
$$\frac{5\pi}{12}$$
 radians = $\frac{75}{12}$ degrees $\frac{5\pi}{12} \times \frac{180}{7}$ [e] 72 degrees = $\frac{2\pi}{5}$ radians $\frac{72}{180}$

Suppose
$$\sin t = -\frac{4}{5}$$
 and $\cos t = \frac{3}{5}$. Fill in the blanks below. Simplify all answers.

$$[a] \cos(-t) = \frac{3}{5} \cos t$$

[b]
$$\sec t = \frac{5}{3}$$
 $\cos t$

$$\left(\frac{S}{r}\right)$$

SCORE:

5 PTS

[a] The central angle is $\frac{1}{6}$ radians. $\frac{12mm}{12mm}$ $\frac{S}{r}$ [b] The area of the intercepted sector is 84 mm^2 . $\frac{1}{2}(12 \text{ mm})^2 \frac{7}{4}(12 \text{ mm})^2 \frac{7}{4}$ [c] If an object is moving around the circle at a linear speed of 42 mm/s, $\frac{5/5}{\frac{5}{\text{e units}}} \cdot \frac{42 \, \text{mm/s}}{12 \, \text{mm}} \quad \left(V = rW \right)$ its angular speed is

(specify the units)